How can Formal Specifications
benefit to Software Testing?

Marie-Claude Gaudel
Emeritus Professor

LRI, Univ Paris-Sud & CNRS

Sept. 2017 TASE 2015 1

Is that the state of the art?

The long quest of a theory of
software testing...

A pioneering paper:
* « We know less about the theory

of testing, which we do often, / .
than about the theory of * o~
program proving, which we do

seldom »
Goodenough J. B., Gerhart S.,

IEEE Transactions on Software
Engineering, 1975

And then many others...

Sept. 2017 TASE 2015 3

In this talk: formal methods
and software testing

Outline of the talk:

* Generalities on
specification-based testing
(or model-based testing)

» Specificities of formal
specifications w.r.t. testing
* Bridging the gap between
testing and formalities.
— Testing hypotheses

— Exploiting testing hypotheses

Sept. 2017 TASE 2015 4

INTRODUCTION PART

Preliminary considerations on specification-based
testing

Sept. 2017 TASE 2015 5

A few words on testing. ..

One tests SYSTEMS

A system 1s a dynamic
entity, embedded in the
physical world <

It is observable via some o
limited interface/procedure
It 1s not always controllable — T]

It 1s quite different from a
piece of text (formula,
program) or a diagram

Sept. 2017 TASE 2015

A philosophical interlude

A

“ . . y &
A map 1s not the territory ™y bk

=,

*A variant: “don’t eat the menu...” ©

A program text, or a specification text,
or a model, is not the system

Sept. 2017 TASE 2015 7

Specification-based Testing

* The internal organisation of the SUT (System
Under Test) 1s not considered

* There 1s some specified requirement expressed
as a text, formula, diagram,...

e The aim 1s to detect deviations of the SUT
w.r.t. the specified requirement

Sept. 2017 TASE 2015 8

Specification-based Testing:
underlying hypotheses

* The internal organisation of the SUT (System
Under Test) 1s not considered, indeed...

e However,

— Implicitly or explicitly, one considers a class of
“testable implementations” =>

— Notion of Testability Hypotheses on the SUT

Often implicit, but always there!

Sept. 2017 TASE 2015

Testability?

» If the SUT can be any demonic system, there 1s no
sensible way of testing it ©®

* Fortunately, some basic assumptions are feasible
(example: correct implementation of booleans and
bounded integers, determinism, ...)

* Some others can be verified in another way: static
checks on the program, preliminary tests, a priori
knowledge of the environment...

Sept. 2017 TASE 2015 10

Specification-based testing:
for what sort of faults?

* Are the properties expressed by the
specification satisfied?

* One tests the SUT against what 1s expressed by
the specification.

* Strongly dependent on the kind of
specification/model considered

Sept. 2017 TASE 2015 11

FORMAL SPECIFICATIONS
AND TESTING

Sept. 2017 TASE 2015 12

Formal Specifications?

* As for any specification framework, there is a
notation:
— Formulas

* Pre/Post-conditions, 15t order logic, JIML, SPEC# ...
 Algebraic Spec (CASL), Z, VDM, B,
— Processes definitions
 CSP, CCS, Lotos, Circus ...
— Annotated diagrams
« Automata, Finite State Machines (FSM), Petri Nets...

* But there 1s more than a syntax...

Sept. 2017 TASE 2015 13

What makes a specification
method formal?

o There is a formal semantics

— Algebras, Predicate transformers, Sets, Labelled
Transition Systems (LTS), Traces and Failures...

» There 1s a formal system (proofs) or a
verification method (model-checking), or both.

e Thus

— Formal specifications can be analysed to guide the
identification of appropriate test cases.

— They may contribute to the definition of oracles.
Sept. 2017 TASE 2015 14

Relations between formal
specifications

 In addition to syntax, semantics, deduction
system, formal specifications come with
notions of
— Equivalences (behavioural, observational, ...)
— Refinements
— Conformance
— Satisfaction

» That are essential for testing
* That are semanticalll}ji or/and logically defined .

Sept. 2017 SE 2015

Required: a satistaction/
conformance relation

ISP ?

e Given some “testable” SUT, what does i1t mean that it
satisfies SP?

e What 1s the correctness reference? Is there an
“exhaustive” (or “complete™) set of tests?

e SP 1s some sort of model or formula; SUT 1s some
sort of system; how to define “SUT sat SP” or “SUT

conf SP” 1n such an heterogeneous context?
Sept. 2017 TASE 2015 16

A generic testability
hypothesis

o “The SUT corresponds to some unknown
formal specification in the same formalism as
specification SP”

— If SP 1s a FSM, SUT behaves like some FSM

— If SP 1s a formula, the symbols of the formula can
be interpreted/computed by SUT

— If SP 1s a process, SUT can be observed as a
process, with traces and deadlocks

* Notation: [SUTJ

Sept. 2017 TASE 2015 17

Back to well-established
relations

)

SP ﬂ sat/conf/refines .:-_-_-_-_ ==

For instance, the satisfaction/conformance relation 1s
* equivalence for FSM,

* logical satisfaction for formulas,

* Traces refinement, deadlock reduction (conf) for processes,
* joco for LTS...

Sept. 2017 TASE 2015 18

SP

consequences,
counter-examples

sat/conf/refines

Sept. 2017

TASE 2015

Tests and
Test drivers

19

[llustration: testing against
traces refinement in CSP

Traces of Counter,

<>
Counter, = add — C, < add>
C, =add — sz[|sub — Counter, <add,add>
C.=sub—C <add,sub>
2 1 <add,add,sub>

Sept. 2017 TASE 2015 20

[llustration: testing against
traces refinement in CSP

Traces of Counter,
Counter, = add — C, z:dd>
C, =add — sz[|sub — Counter, <add,add>
€, =sub—C edd s>
Forbidden traces

<sub>
<add,add add>
<add, sub,sub>

Sept. 2017

testl = pass — sub — fail — STOP
test2 = inc = add — inc — add — pass — add — fail — STOP
test3 = inc — add — inc — sub — pass — sub — fail — STOP

TASE 2015

21

[llustration: testing against
traces refinement in CSP

Traces of Counter,
<>
Counter, = add — C, <add>
C, =add — sz[|sub — Counter, <add,add>
C.=sub—C <add,sub>
2 ! <add,add,sub>
Forbidden traces
<sub> testl = pass — sub — fail — STOP
< > test2 = inc = add — inc — add — pass — add — fail — STOP
<zgzz?jg’§$d> test3 =inc — add — inc — sub — pass — sub — fail — STOP
Test submissions

SUT |[add,sub]| testl \ [add,sub]
SUT |[add,sub]| test2 \ [add,sub]
SUT |[add,sub]| test3 | [add,sub]

Oracle: the last observed
event 1s not fail

Sept. 2017 TASE 2015 22

Exhaustive test set for traces
refinement of CSP

Let us consider the Test Set:

Exhaust, (SP)={T,(s,a)|s € traces (SP) A — a Einitials (SP /s)}

where

T;(s,a)=inc —a, —inc—a, —inc...a,— pass — a — fail - STOP

fors =<a,a,, ..,a,>.

For any test T, its execution against SUT is specified as:
Executiongp g, (T) = (SUT |[aSP || T)\aSP

Theorem (Cavalcanti Gaudel 2007) :

[ISUT/ 1s a traces refinement of SP iff
V T;(s,a)€ Exhaust; (SP), V t€& traces (Executiongps,r(T; (s, a))),
— last (t) = fail

Sept. 2017 TASE 2015 23

op
The corresponding testability %
hypotheses

* SUT behaves like a CSP process
— With the same alphabet of actions as SP

— The actions and events are atomic

o [f SUT 1s non-determinist, it satisfies the
classical complete testing assumption...

* (after a sufficient number of executions all the possible
behaviours are covered)

— Which can be ensured by some adequate
scheduler/test driver (f.i. CHESS...)

Sept. 2017 TASE 2015 24

Its nice to have some
theorems, but exhaustivity 1s
not practicable. ..

exhaust(SP) ?

|
[You are not se%_]
E <
SUT/ =

It has been my
Let us select some } problem for years...
adequate finite subset

AT RS

Sept. 2017 TASE 2015 25

Selection

* How to select finite subsets of Exhaust gy ?

o Test Set Selection 1s based on the specification
(of course, 1t’s Black Box Testing!)

* Among the solutions:
— Uniformity hypotheses

— Regularity hypotheses
— Others ...

Sept. 2017 TASE 2015 26

Another example from CSP

Replicator = ¢?x : Int — d!x — Replicator Traces of Replicator
<>
Freshint(n:Int)=c!n — Freshint(n+1) <c.0> <c.l> ...
: .. <c.0,d.0> <c.1,d.1>...
(Freshint(0)1[c]| Replicator)\ ¢ parallel composition <c.0.d.0.cT> .

with hidden synchronisation on ¢

Forbidden symbolic traces of Replicator
<dv>V vElnt

<c.v, dw> ¥ vw EInt, vFw

<c.v, c.w> Y vw Elnt

<c.v, dv, dw> Y vyw EInt

<c.v, d.v, cw, du>¥ vwu Elnt, w#u

Sept. 2017 TASE 2015 27

An example from CSP

Replicator = c¢?x : Int — d!x — Replicator

Traces of Replicator
<>

Freshint(n : Int) = c!n — Freshint(n+1) <c.0> <c.1>

<c.0,d.0> <c.1,d.1>

(FreshInt(0)1[c]| Replicator)\ ¢ parallel composition | <c0.d.0.c.7>

with hidden synchronisation on ¢

Forbidden symbolic traces
<dv>V vElnt

<c.v, dw> ¥ vw EInt, vFw
<c.v, c.w> Y vw ElInt

<c.v, dv, dw> Y vyw EInt

<c.v, d.v, ew, du>¥ vwu Elnt, w#u

Sept. 2017

TASE 2015

No condition on v: an arbitrary value
will do => Uniformity Hypothesis

There 1s one condition on w: v#w .

Any value satisfying it will do =>
Uniformity Hypothesis, etc

28

An example from CSP

Replicator = c?x : Int — d!x — Replicator Traces of Replicator

FreshInt(n : Int) = c\n — Freshint(n+1) =
<c.0> <c.I>...
(Freshint(0)l[c]| Replicator)\ ¢ parallel composition || <c.0,d.0><c.1,d.1>...

. . . <c.0,d.0,c.7>...
with hidden synchronisation on ¢

Forbidden symbolic traces
<dv>VvEIint

<c.v, dw> ¥ vw EInt, vFw

<c.v, e.w> Y vw Elnt

<c.v, dv, dw> V¥ vwEInt

<c.v, dv, ew, du>Y vywu EInt, wtu

No condition on v: an arbitrary value will do
=> Uniformity Hypothesis => testl

There 1s one condition on w: v#w .Any value
satisfying it will do => Uniformity
Hypothesis => test2, etc

testl = pass — d.127 — fail = STOP
test2 =inc — c.0 — pass = d.17 — fail = STOP

test3 =inc — c4 — pass — c.1024 — fail — STOP
test4 =inc — ¢ 718 = inc —> d.18 — pass — d.46 — fail — STOP
testS=...

But this test set 1s still infinite!!
And by the way, are you sure that
testS would be useful?

hat a crazy
academic!

Just make use of
regularity...but it is
sometimes risky.

Sept. 2017 TASE 2015 30

An example of regularity

hypothesis

Traces of Replicator

Replicator = ¢?x : Int — d!x — Replicator -
Freshint(n: Int)=c'n — Freshint(n+1) zz(l)i

(Freshint(0)1[c]| Replicator)\ ¢ parallel composition || <c.0,d.0>

<c.l.d.1>...

with hidden synchronisation on ¢ <c.0,d.0,c.7>...

Forbidden symbolic traces
<dv>VvEint

<c.v, dw> ¥ vw EInt, vFw
<c.v, cew> Y vyw EInt

<cv, dv, dw> V¥ vyw EInt

<c.v, dv, ew, du>Y vywu EInt, wtu

There 1s no dependency between the
recursive calls of Replicator.

There 1s no shared state.

=>[f the SUT 1s determinist, one execution
1s sufficient => Regularity Hypothesis =>
Finite Test Set

testl = pass — d.127 — fail = STOP
test2 =inc — c.0 — pass = d.17 — fail = STOP

test3 =inc —> c4 — pass — c.1024 — fail — STOP
test4 =inc — ¢.18 = inc —> d.18 — pass — d.46 — fail — STOP

Selection Hypotheses

« Addition to Testability Hypotheses: Selection Hypotheses on the
SUT

o Uniformity Hypothesis
— @(X) 1s a property, SUT 1s a system, D 1s a sub-domain of the domain of X
— (Vt,eD) ([SUT] sat ¥(t,)) = (Yt €ED) (J[SUTJ |= P(1)))
— Determination of sub-domains ? guided by the specification, see later...
* Regularity Hypothesis
— (Vi EDom(X), [t|<k = [SUT]sat ®(t))) =
(Vt EDom(X) (J[SUTJ sat d(t))

— Determination of [t|? ¢f. specification

Sept. 2017 TASE 2015 32

Selection of finite test sets

e “Selection Hypotheses” H

on SUT, and construction of \ _qi/1 esable. exhaust(SP)>
practicable test sets 7 such

that:

H holds for SUT => <Weak Hyp, Big Test Set>
(SUT passes T <=> [SUT]
sat SP)

<Strong Hyp, Small s>
« <H, T>1savalid and

unbiased Test Context SUT correct. 0

e or: T1s complete w.r.t. H
Sept. 2017 TASE 2015 33

INVENTING AND EXPLOITING
TESTING HYPOTHESES

Sept. 2017 TASE 2015 34

Iyt
“Invention’ of selection Y
4

hypotheses

Several possibilities:

* Guided by the conditions that appear in the
specification : case analysis, case splitting

* Or guided by some knowledge of the
operational environment

* Or guided by some fault model

* Or guided by the syntax (coverage criteria)

Sept. 2017 TASE 2015 35

Case splitting

Two main techniques:

* Reduction of formulas into Disjunctive
Normal Form (DNF) /Dick & Faivre 1993]

* Unfolding of recursive definitions [Burstall &
Darlington 1977]

Implementations:
* Conditional rewriting, Narrowing

* Symbolic evaluation

Sept. 2017 TASE 2015 36

Non-termination of case
splitting?

» Regularity hypotheses again, or

* Interpolation — Inference of invariants => use
of proof assistants

* An advanced prototype: HOL-TestGen:
— Developed by Brucker-Wolff-Briigger-Krieger

— Test case generator for specification based unit
testing

— Built-on top of the HOL/Isabelle theorem proving
Sept. wienvironment TASE 2015 37

HOL-TestGen 1n a nutshell

* In HOL-TestGen you can:
— write test specifications 1n Higher-order logics (HOL)

— (semi-) automatically partition the input space,
resulting in abstract test cases

— automatically select concrete test data
— automatically generate test scripts (in SML)

— using a foreign language interface, implementations in
arbitrary languages (e.g. C) can be tested.

Sept. 2017 TASE 2015 38

How to use 1t? Step 1

* Writing a test-theory: properties of the context
« Example: Sorting in HOL

- fun 1ns :: "(’a::linorder) =’a list = ’a list"

where "ins x []=[x] " |

"Ins X (y#ys) = (if (x <y) then x#y#ys else (y#(ins x ys)))”
- fun sort:: "("a::linorder) list = ’a list"

where "sort [] =[] " | "sort (x#xs) = 1ns X (sort xs)"

This is a formal }
definition of sort(l)

Sept. 2017 TASE 2015 39

How to use 1t? Step 2

* Writing a test-theory: properties of the context

* Writing a test-specification TS: what do you
want to test?

« Example:
test spec "sort(l) = prog(l)"

| want the program to }
sort list |

o

Sept. 2017 TASE 2015 40

How to use 1t? Step 3

* Writing a test-theory: properties of the context
« Writing a test-specification TS: what do you want to test?

* Conversion into some test-theorem: case-
splitting (big parameterised test case generation

macro)

TC,=...=TC,= THYP(H,) = ... = THYP(H,) = TS
 where test cases TC, have the form

Constraint,(x) = . . . = Constraint,(x) = P(prog x)

» where THYP(H,) are test-hypotheses

« where TS 1s the Test Specification
Sept. 2017 TASE 2015 41

How to use 1t? Step 3

» Writing a test-theory: properties of the context
» Writing a test-specification TS: what do you want to test?

* Conversion 1nto some test-theorem: case-
splitting via some test case generation macro

Example : apply(gen test cases 3 1 “prog”) yields

Here are my test cases }

as constraints, 1.e. as test cases

| = prog([])
7X1] = prog([?X1]) ©
X1 <7X2 1= [7X1, 2X2] = prog([?X1, ?x%
X1 > 7X2] = [7X2, 2X1] = prog([?X1, 7X2])

Sept. 2017 TASE 2015 42

How to use 1t? Step 3

* Writing a test-theory: properties of the context
« Writing a test-specification TS: what do you want to test?

» Conversion 1nto some test-theorem: case-splitting
via some test case generation macro

Example : apply(gen test cases 3 1 “prog”) yields among
the hypotheses:

— THYP(3 xy. y <x — [y, x] =sort(PUT [x,y]) —

V xy.y<x —[yx]=sort(PUT [X,y]))
— THYP(3 < |l] — is_sorted(SUT 1))

Here are some }
hypotheses

Y .

Sept. 2017 TASE 2015

How to use 1t? Step 4

* Writing a test-theory: properties of the context
» Writing a test-specification TS: what do you want to test?

e Conversion into test-theorem: case-splitting

* Generation of test-data: using some SMT
solver (Z3, Alt-Ergo) - }

— [] =prog [} tests
— [3] = prog [3]

— 16,8] = prog [6, 8] /W
—10,19] =prog [19, 0]

Sept. 2017 TASE 2015 44

How to exploit the test-
theorems?

 In addition to test data generation, hypotheses
are useful:

* As static properties of the program, to be
proved

* As new test specifications, to be tested

« As warning to the developers... WHAT?

(oo

PR
-
@.i’

Sept. 2017 TASE 2015 45

IT WAS MY CONCLUSION!
SOME QUESTIONS?

Sept. 2017 TASE 2015 46

