

How can Formal Specifications benefit to Software Testing?

Marie-Claude Gaudel Emeritus Professor LRI, Univ Paris-Sud & CNRS

TASE 2015

The long quest of a theory of software testing...

A pioneering paper:

- *« We know less about the theory of testing, which we do often, than about the theory of program proving, which we do seldom »*
- Goodenough J. B., Gerhart S.,
 - IEEE Transactions on Software Engineering, 1975

And then many others...

Sept. 2017

Sept. 2017

In this talk: formal methods and software testing

TASE 2015

- Generalities on specification-based testing (or model-based testing)
- Specificities of formal specifications w.r.t. testing
- Bridging the gap between testing and formalities:
 - Testing hypotheses
 - Exploiting testing hypotheses

INTRODUCTION PART

Preliminary considerations on specification-based testing

Sept. 2017

A few words on testing....

- **One tests SYSTEMS**
- A system is a dynamic • entity, embedded in the physical world
- It is *observable* via some • limited interface/procedure
- It is not always *controllable* ٠
- It is quite different from a • piece of text (formula, program) or a *diagram*

*A variant: "don't eat the menu..." $\textcircled{\odot}$

A program text, or a specification text, or a model, is not the system

TASE 2015

Specification-based Testing

- The internal organisation of the SUT (System Under Test) is not considered
- There is some specified requirement expressed as a text, formula, diagram,...
- The aim is to detect deviations of the SUT w.r.t. the specified requirement

Specification-based Testing: underlying hypotheses

- The internal organisation of the SUT (System Under Test) is not considered, indeed...
- However,
 - Implicitly or explicitly, one considers a class of "testable implementations" =>
 - Notion of *Testability Hypotheses* on the SUT

Often implicit, but always there!

- If the SUT can be *any demonic system*, there is no sensible way of testing it ⊗
- Fortunately, *some basic assumptions are feasible* (example: correct implementation of booleans and bounded integers, determinism, ...)
- Some others can be *verified in another way*: static checks on the program, preliminary tests, a priori knowledge of the environment...

Specification-based testing: for what sort of faults?

- Are the properties expressed by the specification satisfied?
- One tests the SUT against what is expressed by the specification.
- Strongly dependent on the kind of specification/model considered

FORMAL SPECIFICATIONS AND TESTING

Sept. 2017

TASE 2015

Formal Specifications?

- As for any specification framework, there is a notation:
 - Formulas
 - Pre/Post-conditions, 1st order logic, JML, SPEC# ...
 - Algebraic Spec (CASL), Z, VDM, B,
 - Processes definitions
 - CSP, CCS, Lotos, Circus ...
 - Annotated diagrams
 - Automata, Finite State Machines (FSM), Petri Nets...
- But there is more than a syntax...

Sept. 2017

What makes a specification method formal?

- There is a formal semantics
 - Algebras, Predicate transformers, Sets, Labelled Transition Systems (LTS), Traces and Failures...
- There is a *formal system* (proofs) or a *verification method* (model-checking), or both.
- Thus
 - Formal specifications can be analysed to guide the identification of appropriate test cases.

– They may contribute to the definition of oracles. Sept. 2017 TASE 2015

Relations between formal specifications

- In addition to syntax, semantics, deduction system, formal specifications come with notions of
 - Equivalences (behavioural, observational, ...)
 - Refinements
 - Conformance
 - Satisfaction
- That are essential for testing
- That are semantically or/and logically defined 15 TASE 2015

- Given some "testable" SUT, what does it mean that it satisfies SP?
- What is the correctness reference? Is there an "exhaustive" (or "complete") set of tests?
- SP is some sort of model or formula; SUT is some sort of *system*; how to define "SUT sat SP" or "SUT conf SP" in such an heterogeneous context? Sept. 2017 **TASE 2015**

A generic testability hypothesis

- *"The SUT corresponds to some unknown formal specification in the same formalism as specification SP"*
 - If SP is a FSM, SUT behaves like some FSM
 - If SP is a formula, the symbols of the formula can be interpreted/computed by SUT
 - If SP is a process, SUT can be observed as a process, with traces and deadlocks
- Notation: *[SUT]*

Sept. 2017

TASE 2015

Back to well-established relations

For instance, the *satisfaction/conformance* relation is

- equivalence for FSM,
- logical satisfaction for formulas,
- Traces refinement, deadlock reduction (*conf*) for processes,
- *ioco* for LTS...

Illustration: testing against *traces refinement* in CSP

 $Counter_{2} = add \rightarrow C_{1}$ $C_{1} = add \rightarrow C_{2} []sub \rightarrow Counter_{2}$ $C_{2} = sub \rightarrow C_{1}$

Traces of *Counter*² <> $\langle add \rangle$ < add.add ><add,sub> <add,add,sub> . . .

Illustration: testing against traces refinement in CSP

 $Counter_2 = add \rightarrow C_1$ $C_1 = add \rightarrow C_2 [] sub \rightarrow Counter_2$ $C_2 = \bar{s}u\bar{b} \rightarrow C_1$

Traces of *Counter*² <> $\langle add \rangle$ $\langle add.add \rangle$ <add.sub> <add,add,sub>

Forbidden traces <sub> <add,add,add> <add,sub,sub>

 $test1 = pass \rightarrow sub \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow add \rightarrow inc \rightarrow add \rightarrow pass \rightarrow add \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow add \rightarrow inc \rightarrow sub \rightarrow pass \rightarrow sub \rightarrow fail \rightarrow STOP$

Illustration: testing against traces refinement in CSP

Counter₂ = add $\rightarrow C_1$ $C_1 = add \rightarrow C_2 [] sub \rightarrow Counter_2$ $C_2 = \bar{s}u\bar{b} \rightarrow C_1$

Traces of *Counter*₂ <> $\langle add \rangle$ $\langle add.add \rangle$ <add.sub> <add,add,sub>

Forbidden traces <sub> <add,add,add> <add,sub,sub>

 $test1 = pass \rightarrow sub \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow add \rightarrow inc \rightarrow add \rightarrow pass \rightarrow add \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow add \rightarrow inc \rightarrow sub \rightarrow pass \rightarrow sub \rightarrow fail \rightarrow STOP$

Test submissions SUT |[add,sub]| test1 \ [add,sub] SUT |[add,sub]| test2 \ [add,sub] SUT |[add,sub]| test3 \ [add,sub]

Oracle: the last observed event is not *fail*

Exhaustive test set for traces refinement of CSP

Let us consider the Test Set:

 $Exhaust_T(SP) = \{T_T(s, a) \mid s \in traces(SP) \land \neg a \in initials(SP/s)\}$ where

 $T_T(s, a) = inc \rightarrow a_1 \rightarrow inc \rightarrow a_2 \rightarrow inc \dots a_n \rightarrow pass \rightarrow a \rightarrow fail \rightarrow STOP$ for $s = \langle a_1, a_2, \dots, a_n \rangle$. For any test *T*, its execution against *SUT* is specified as:

 $Execution_{SPSUT}(T) = (SUT | [\alpha SP] | T) | \alpha SP$

Theorem (Cavalcanti Gaudel 2007) :

[|SUT|] is a traces refinement of SP iff $\forall T_T(s, a) \in Exhaust_T(SP), \quad \forall t \in traces (Execution_{SP,SUT}(T_T(s, a))), \quad \neg last (t) = fail$

The corresponding testability hypotheses

- *SUT* behaves like a CSP process
 - With the same alphabet of actions as SP
 - The actions and events are atomic
- If *SUT* is non-determinist, it satisfies the classical *complete testing assumption*...
 - (after a sufficient number of executions all the possible behaviours are covered)
 - Which can be ensured by some adequate scheduler/test driver (f.i. CHESS...)

Selection

- How to select finite subsets of *Exhaust*_{SP}?
- *Test Set Selection* is based on the specification (of course, it's Black Box Testing!)
- Among the solutions:
 - Uniformity hypotheses
 - Regularity hypotheses
 - Others ...

Another example from CSP

 $Replicator = c?x: Int \rightarrow d!x \rightarrow Replicator$

 $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$

 $(FreshInt(0)|[c]|Replicator) \land c$ parallel composition

with hidden synchronisation on c

```
Traces of Replicator
<>
<c.0> <c.1> ...
<c.0,d.0> <c.1,d.1>...
<c.0,d.0,c.7> ...
```

. . .

Forbidden symbolic traces of Replicator $\langle d.v \rangle \forall v \in Int$ $\langle c.v, d.w \rangle \forall v, w \in Int, v \neq w$ $\langle c.v, c.w \rangle \forall v, w \in Int$ $\langle c.v, d.v, d.w \rangle \forall v, w \in Int$ $\langle c.v, d.v, c.w, d.u \rangle \forall v, w, u \in Int, w \neq u$...

An example from CSP

 $Replicator = c?x: Int \rightarrow d!x \rightarrow Replicator$ $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$ $(FreshInt(0)|[c]|Replicator) \setminus c \text{ parallel composition}$

with hidden synchronisation on *c*

Traces of Replicator <> <c.0> <c.1> <c.0,d.0> <c.1,d.1> <c.0,d.0,c.7>

Forbidden symbolic traces $\langle d.v \rangle \forall v \in Int$ $\langle c.v, d.w \rangle \forall v, w \in Int, v \neq w$ $\langle c.v, c.w \rangle \forall v, w \in Int$ $\langle c.v, d.v, d.w \rangle \forall v, w \in Int$ $\langle c.v, d.v, c.w, d.u \rangle \forall v, w, u \in Int, w \neq u$

No condition on *v*: an arbitrary value will do => Uniformity Hypothesis

. . .

There is one condition on $w: v \neq w$. Any value satisfying it will do => Uniformity Hypothesis, etc

Sept. 2017

. . .

. . .

An example from CSP

 $\tilde{R}eplicator = c?x: Int \rightarrow d!x \rightarrow Replicator$

 $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$

 $(FreshInt(0)|[c]|Replicator) \ c$ parallel composition

with hidden synchronisation on *c*

Traces of Replicator <> <c.0> <c.1>... <c.0,d.0> <c.1,d.1>... <c.0,d.0,c.7>...

Forbidden symbolic traces $< d.v > \forall v \in Int$ $< c.v, d.w > \forall v, w \in Int, v \neq w$ $< c.v, c.w > \forall v, w \in Int$ $< c.v, d.v, d.w > \forall v, w \in Int$ $< c.v, d.v, c.w, d.u > \forall v, w, u \in Int, w \neq u$

No condition on *v*: an arbitrary value will do => Uniformity Hypothesis => test1 There is one condition on *w*: $v \neq w$. Any value satisfying it will do => Uniformity Hypothesis => test2, etc

t_{ast1} mass d_{100} f_{as1} $STOP$
$lest = pass \rightarrow a.127 \rightarrow jall \rightarrow SIOF$
$test2 = inc \rightarrow c.0 \rightarrow pass \rightarrow d.17 \rightarrow fail \rightarrow STOP$
 $test3 = inc \rightarrow c.4 \rightarrow pass \rightarrow c.1024 \rightarrow fail \rightarrow STOP$
$test4 = inc \rightarrow c.78 \rightarrow inc \rightarrow d.78 \rightarrow pass \rightarrow d.46 \rightarrow fail \rightarrow STOP$
<i>test5</i> =

. . . .

. . .

An example of regularity hypothesis

 $\tilde{R}eplicator = c?x: Int \rightarrow d!x \rightarrow Replicator$

 $FreshInt(n:Int) = c!n \rightarrow FreshInt(n+1)$

 $(FreshInt(0)|[c]|Replicator) \ c$ parallel composition

with hidden synchronisation on *c*

Traces of Replicator <> <c.0> <c.1>... <c.0,d.0> <c.1,d.1>... <c.0,d.0,c.7>...

Forbidden symbolic traces	
$< d.v > \forall v \in Int$	
$< c.v, d.w > \forall v,w \in Int, v \neq w$	
$< c.v, c.w > \forall v,w \in Int$	
$< c.v. d.v. d.w > \forall v.w \in Int$	
$< c.v, d.v, c.w, d.u > \forall v,w,u \in Int, w \neq u$	

. ..

There is no dependency between the recursive calls of *Replicator*. There is no shared state. ⇒ If the SUT is determinist, one execution is sufficient => Regularity Hypothesis => **Finite Test Set**

 $test1 = pass \rightarrow d.127 \rightarrow fail \rightarrow STOP$ $test2 = inc \rightarrow c.0 \rightarrow pass \rightarrow d.17 \rightarrow fail \rightarrow STOP$ $test3 = inc \rightarrow c.4 \rightarrow pass \rightarrow c.1024 \rightarrow fail \rightarrow STOP$ $test4 = inc \rightarrow c.78 \rightarrow inc \rightarrow d.78 \rightarrow pass \rightarrow d.46 \rightarrow fail \rightarrow STOP$

Selection Hypotheses

- Addition to Testability Hypotheses: *Selection Hypotheses* on the SUT
- Uniformity Hypothesis
 - $\Phi(X)$ is a property, SUT is a system, D is a sub-domain of the domain of X
 - $(\forall t_0 \in D) (\llbracket SUT \rrbracket sat \Phi(t_0) \Rightarrow (\forall t \in D) (\llbracket SUT \rrbracket \models \Phi(t)))$
 - Determination of sub-domains ? guided by the specification, see later...
- Regularity Hypothesis
 - $-\left(\left(\forall t \in Dom(X), \left|t\right| \leq k \Rightarrow \llbracket SUT \rrbracket sat \Phi(t)\right)\right) \Rightarrow$

 $(\forall t \in Dom(X) ([SUT]] sat \Phi(t))$

- Determination of |t|? cf. specification

Selection of finite test sets

- "Selection Hypotheses" *H* on *SUT*, and construction of practicable test sets *T* such that:
- H holds for SUT => (SUT passes T <=> [[SUT]] sat SP)
- *<H, T>* is a valid and unbiased Test Context
- or: *T* is complete w.r.t. *H* Sept. 2017

<SUT testable, exhaust(SP) >

<Weak Hyp, Big Test Set>

<Strong Hyp, Small TS>

SUT correct, Ø

INVENTING AND EXPLOITING TESTING HYPOTHESES

Sept. 2017

TASE 2015

"Invention" of selection hypotheses

Several possibilities:

- Guided by the conditions that appear in the specification : case analysis, case splitting
- Or guided by some knowledge of the operational environment
- Or guided by some fault model
- Or guided by the syntax (coverage criteria)

Case splitting

Two main techniques:

- Reduction of formulas into Disjunctive Normal Form (DNF) [Dick & Faivre 1993]
- Unfolding of recursive definitions [Burstall & Darlington 1977]

Implementations:

- Conditional rewriting, Narrowing
- Symbolic evaluation

Sept. 2017

Non-termination of case splitting?

- Regularity hypotheses again, or
- Interpolation Inference of invariants => use of proof assistants
- An advanced prototype: HOL-TestGen:
 - Developed by Brucker-Wolff-Brügger-Krieger
 - Test case generator for specification based unit testing

- Built-on top of the HOL/Isabelle theorem proving Sept. 2017 environment TASE 2015 37

HOL-TestGen in a nutshell

- In HOL-TestGen you can:
 - write test specifications in Higher-order logics (HOL)
 - (semi-) automatically partition the input space, resulting in abstract test cases
 - automatically select concrete test data
 - automatically generate test scripts (in SML)
 - using a foreign language interface, implementations in arbitrary languages (e.g. C) can be tested.

- Writing a test-theory: *properties of the context*
- Example: Sorting in HOL

- fun ins :: "('a::linorder) \Rightarrow 'a list \Rightarrow 'a list"

where "ins x [] = [x]"

"ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))"

- fun sort:: "('a::linorder) list ⇒ 'a list"

where "sort [] = [] " | "sort (x#xs) = ins x (sort xs)"

- Writing a test-theory: *properties of the context*
- Writing a test-specification TS: *what do you want to test?*
- Example:

test_spec "sort(l) = prog(l)"

Sept. 2017

- Writing a test-theory: *properties of the context*
- Writing a test-specification TS: *what do you want to test?*
- Conversion into some test-theorem: *casesplitting (big parameterised test case generation macro)*

 $TC_1 \Rightarrow \ldots \Rightarrow TC_n \Rightarrow THYP(H_1) \Rightarrow \ldots \Rightarrow THYP(H_m) \Rightarrow TS$

• where test cases TC_i have the form

 $Constraint_1(x) \Rightarrow \ldots \Rightarrow Constraint_k(x) \Rightarrow P(prog x)$

- where $THYP(H_i)$ are test-hypotheses
- where TS is the Test Specification Sept. 2017 TASE 2015

- Writing a test-theory: *properties of the context*
- Writing a test-specification TS: what do you want to test?
- Conversion into some test-theorem: *casesplitting via some test case generation macro*

Example : apply(gen_test_cases 3 1 "prog") yields

as constraints, i.e. as test cases

[] = prog([]) [?X1] = prog([?X1]) $[?X1 \le ?X2] \Rightarrow [?X1, ?X2] = prog([?X1, ?X2])$ $[?X1 > ?X2] \Rightarrow [?X2, ?X1] = prog([?X1, ?X2])$ TASE 2015

- Writing a test-theory: *properties of the context*
- Writing a test-specification TS: what do you want to test?
- Conversion into some test-theorem: *case-splitting*

via some test case generation macro

Example : apply(gen_test_cases 3 1 "prog") yields among the hypotheses:

− THYP($\exists x y. y < x \rightarrow [y,x] = sort(PUT [x,y]) \rightarrow$

$$\forall x y. y < x \rightarrow [y,x] = \text{sort}(\text{PUT} [x,y]))$$

- THYP($3 \le |1| \rightarrow is_sorted(SUT 1)$)

Sept. 2017

- Writing a test-theory: *properties of the context*
- Writing a test-specification TS: what do you want to test?
- Conversion into test-theorem: *case-splitting*
- Generation of test-data: using some SMT solver (Z3, Alt-Ergo)
 - [] = prog []
 - -[3] = prog[3]
 - -[6,8] = prog[6,8]
 - -[0,19] = prog [19, 0]

How to exploit the testtheorems?

- In addition to test data generation, hypotheses are useful:
- As static properties of the program, to be proved
- As new test specifications, to be tested
- As warning to the developers...

IT WAS MY CONCLUSION! SOME QUESTIONS?

TASE 2015