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Is that the state of the art? 
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The long quest of a theory of 
software testing… 

A pioneering paper: 
•  « We know less about the theory 

of testing, which we do often, 
than about the theory of 
program proving, which we do 
seldom » 

Goodenough J. B., Gerhart S.,  
 IEEE Transactions on Software 
Engineering, 1975 

 
And then many others… 
 



In this talk: formal methods 
and software testing 

Outline of the talk: 
•  Generalities on 

specification-based testing 
(or model-based testing) 

•  Specificities of formal 
specifications w.r.t. testing 

•  Bridging the gap between 
testing and formalities:  
–  Testing hypotheses 
–  Exploiting testing hypotheses 
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INTRODUCTION PART 
Preliminary considerations on specification-based 
testing 
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A few words on testing… 

•  One tests SYSTEMS 
•  A system is a dynamic 

entity, embedded in the 
physical world 

•  It is observable via some 
limited interface/procedure 

•  It is not always controllable 
•  It is quite different from a 

piece of text (formula, 
program) or a diagram 

input

output
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A philosophical interlude 

       “A map is not the territory”* Korzybski 

A program text, or a specification text, 
or a model, is not the system

*A variant: “don’t eat the menu…” J   
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Specification-based Testing 

•  The internal organisation of the SUT (System 
Under Test) is not considered 

•  There is some specified requirement expressed 
as a text, formula, diagram,… 

•  The aim is to detect deviations of the SUT 
w.r.t. the specified requirement 
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Specification-based Testing: 
underlying hypotheses 

•  The internal organisation of the SUT (System 
Under Test) is not considered, indeed…  

•  However, 
–  Implicitly or explicitly, one considers a class of 

“testable implementations” =>  
– Notion of Testability Hypotheses on the SUT 

Often implicit, but always there! 
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Testability? 

•  If the SUT can be any demonic system, there is no 
sensible way of testing it L 

•   Fortunately, some basic assumptions are feasible 
(example: correct implementation of booleans and 
bounded integers, determinism, …) 

•   Some others can be verified in another way: static 
checks on the program, preliminary tests, a priori 
knowledge of the environment… 

SUT?



Specification-based testing: 
for what sort of faults? 

•  Are the properties expressed by the 
specification satisfied? 

•  One tests the SUT against what is expressed by 
the specification. 

•  Strongly dependent on the kind of 
specification/model considered 
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FORMAL SPECIFICATIONS 
AND TESTING 
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Formal Specifications? 

•  As for any specification framework, there is a 
notation: 
– Formulas 

•  Pre/Post-conditions, 1st order logic, JML, SPEC# … 
•  Algebraic Spec (CASL), Z, VDM, B,  

– Processes definitions 
•  CSP, CCS, Lotos, Circus … 

– Annotated diagrams 
•  Automata, Finite State Machines (FSM), Petri Nets… 

•  But there is more than a syntax… 
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What makes a specification 
method formal? 

•  There is a formal semantics 
– Algebras, Predicate transformers, Sets, Labelled 

Transition Systems (LTS), Traces and Failures… 
•  There is a formal system (proofs) or a 

verification method (model-checking), or both. 
•  Thus 

– Formal specifications can be analysed to guide the 
identification of appropriate test cases. 

– They may contribute to the definition of oracles.  
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Relations between formal 
specifications 

•  In addition to syntax, semantics, deduction 
system, formal specifications come with 
notions of 
– Equivalences (behavioural, observational,…) 
– Refinements 
– Conformance 
–  Satisfaction 

•  That are essential for testing 
•  That are semantically or/and logically defined 
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Required: a satisfaction/
conformance relation 

SUT?

•  Given some “testable” SUT, what does it mean that it 
satisfies SP?
•  What is the correctness reference? Is there an 
“exhaustive” (or “complete”)  set of tests? 
•  SP is some sort of model or formula; SUT is some 
sort of system; how to define “SUT sat SP” or “SUT 
conf SP” in such an heterogeneous context?

SP
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A generic testability 
hypothesis 

•  “The SUT corresponds to some unknown 
formal specification in the same formalism as 
specification SP” 
–  If SP is a FSM, SUT behaves like some FSM 
–  If SP is a formula, the symbols of the formula can 

be interpreted/computed by SUT 
–  If SP is a process, SUT can be observed as a 

process, with traces and deadlocks 
•  Notation: SUT
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Back to well-established 
relations 
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[|SUT|]
SP

SUT
sat/conf/refines 

For instance, the satisfaction/conformance relation is 
•  equivalence for FSM,  
•  logical satisfaction for formulas,  
•  Traces refinement, deadlock reduction (conf) for processes, 
•  ioco for LTS… 
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SP
SUT

sat/conf/refines 

consequences, 
counter-examples 

Tests and 
Test drivers 

[|SUT|]



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 

Forbidden traces 
<sub> 
<add,add,add> 
<add,sub,sub> 
… 

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP



Illustration: testing against 
traces refinement in CSP 
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Counter2 = add→C1
C1 = add→C2 [ ]sub→Counter2

C2 = sub→C1

Traces of Counter2 
<> 
<add> 
<add,add> 
<add,sub> 
<add,add,sub> 
… 

Forbidden traces 
<sub> 
<add,add,add> 
<add,sub,sub> 
… 

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Test submissions 
SUT |[add,sub]| test1 \ [add,sub] 
SUT |[add,sub]| test2 \ [add,sub] 
SUT |[add,sub]| test3 \ [add,sub] 

Oracle: the last observed 
event is not fail 



Exhaustive test set for traces 
refinement of CSP 

Let us consider the Test Set: 
ExhaustT (SP ) = {TT (s , a ) | s ∈ traces (SP ) ∧ ¬ a∈initials (SP /s )} 
where 
TT (s , a ) = inc → a1  → inc → a2  → inc . . . an → pass → a → fail → STOP 
for s = <a1,a2 , ...,an>. 
For any test T, its execution against SUT is specified as: 

ExecutionSP,SUT(T ) = (SUT  |[ αSP  ]| T )\αSP 
 

Theorem (Cavalcanti Gaudel 2007) :  
[|SUT|] is a traces refinement of SP iff 
∀ TT (s , a )∈ ExhaustT (SP ),     ∀ t∈ traces (ExecutionSP,SUT (TT (s , a ))),  

¬ last (t ) = fail 
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The corresponding testability 
hypotheses 

•  SUT behaves like a CSP process 
– With the same alphabet of actions as SP 
– The actions and events are atomic 

•  If SUT is non-determinist, it satisfies the 
classical complete testing assumption… 

•  (after a sufficient number of executions all the possible 
behaviours are covered) 

– Which can be ensured by some adequate 
scheduler/test driver (f.i. CHESS…) 
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Its nice to have some 
theorems, but exhaustivity is 

not practicable… 
exhaust(SP) ? 

You are not serious! 

Let us select some 
adequate finite subset 

It has been my 
problem for years… 

SUT 

SUT 

25 
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Selection 

•  How to select finite subsets of ExhaustSP ? 
•  Test Set Selection  is based on the specification 

(of course, it’s Black Box Testing!) 
•  Among the solutions:  

– Uniformity hypotheses  
– Regularity hypotheses 
– Others … 



Another example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>    <c.1> … 
<c.0,d.0>  <c.1,d.1>… 
<c.0,d.0,c.7> … 
… 

Forbidden symbolic traces of Replicator 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 
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An example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>    <c.1> 
<c.0,d.0>   <c.1,d.1> 
<c.0,d.0,c.7> 
… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

No condition on v: an arbitrary value  
will do => Uniformity Hypothesis  

There is one condition on w: v≠w . 
Any value satisfying it will do =>  
Uniformity Hypothesis,  etc 
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An example from CSP 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>    <c.1>… 
<c.0,d.0> <c.1,d.1>… 
<c.0,d.0,c.7>… 
… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

No condition on v: an arbitrary value will do 
=> Uniformity Hypothesis => test1 
There is one condition on w: v≠w .Any value 
satisfying it will do => Uniformity  
Hypothesis => test2,  etc 
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test1= pass→ d.127→ fail→ STOP
test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
test5=…
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But this test set is still infinite!! 
And by the way, are you sure that  

test5 would be useful? 
 
  
 

Just make use of  
regularity…but it is 
sometimes risky. 

What a crazy 
academic! 



An example of regularity 
hypothesis 

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c  parallel composition 
with hidden synchronisation on c

Traces of Replicator 
<> 
<c.0>     
<c.1>… 
<c.0,d.0>  
<c.1,d.1>… 
<c.0,d.0,c.7>… 

Forbidden symbolic traces 
<d.v> ∀ v∈Int 
<c.v, d.w> ∀ v,w∈Int, v≠w 
<c.v, c.w> ∀ v,w∈Int 
<c.v, d.v, d.w> ∀ v,w∈Int  
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u 
… 

There is no dependency between the 
recursive calls of Replicator. 
There is no shared state. 
⇒ If the SUT is determinist, one execution  
is sufficient => Regularity Hypothesis =>  
Finite Test Set 
 test1= pass→ d.127→ fail→ STOP

test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
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Selection Hypotheses 

•  Addition to Testability Hypotheses: Selection Hypotheses on the 
SUT 

•  Uniformity Hypothesis 
–   Φ(X) is a property, SUT is a system, D is a sub-domain of the domain of X  

–   (∀ t0 ∈ D) ( SUT  sat Φ(t0) ⇒ (∀ t ∈ D) ( SUT  |= Φ(t)) ) 
–  Determination of sub-domains ? guided by the specification, see later… 

•   Regularity Hypothesis 
–  ( (∀ t ∈ Dom(X), ⎮t⎮≤ k ⇒ SUT  sat Φ(t) )) ⇒  

    (∀ t ∈ Dom(X ) ( SUT  sat Φ(t)) 
–  Determination of |t|? cf. specification 
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Selection of finite test sets 

•  “Selection Hypotheses” H 
on SUT, and construction of 
practicable test sets T such 
that: 

H holds for SUT => 
 (SUT passes T <=> SUT  
sat SP) !

  
•  <H, T> is a valid and 

unbiased Test Context 
•  or: T is complete w.r.t. H 
 

<SUT testable, exhaust(SP)> 
 

<Weak Hyp, Big Test Set> 
 

<Strong Hyp, Small TS> 

 

<SUT correct, Ø> 



INVENTING AND EXPLOITING 
TESTING HYPOTHESES 
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“Invention” of selection 
hypotheses 

Several possibilities: 
•  Guided by the conditions that appear in the 

specification : case analysis, case splitting 
•  Or guided by some knowledge of the 

operational environment 
•  Or guided by some fault model 
•  Or guided by the syntax (coverage criteria)  
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Case splitting 

Two main techniques: 
•  Reduction of formulas into Disjunctive 

Normal Form (DNF) [Dick & Faivre 1993] 
•  Unfolding of recursive definitions [Burstall & 

Darlington 1977] 
Implementations: 
•  Conditional rewriting, Narrowing  
•  Symbolic evaluation 
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Non-termination of case 
splitting? 

•  Regularity hypotheses again, or 
•  Interpolation – Inference of invariants => use 

of proof assistants 
•  An advanced prototype: HOL-TestGen: 

– Developed by Brucker-Wolff-Brügger-Krieger 
– Test case generator for specification based unit 

testing 
– Built-on top of the HOL/Isabelle theorem proving 
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HOL-TestGen in a nutshell 

•  In HOL-TestGen you can: 
– write test specifications in Higher-order logics (HOL) 
–  (semi-) automatically partition the input space, 

resulting in abstract test cases  
–  automatically select concrete test data  
–  automatically generate test scripts (in SML)  
–  using a foreign language interface, implementations in 

arbitrary languages (e.g. C) can be tested. 
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How to use it? Step 1 

•  Writing a test-theory: properties of the context 
•  Example: Sorting in HOL 

- fun ins :: "(’a::linorder) ⇒’a list ⇒ ’a list" 
where "ins x [] = [x] " | 
"ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))” 
- fun sort:: "(’a::linorder) list ⇒ ’a list" 
where "sort [] = [] "  | "sort (x#xs) = ins x (sort xs)" 
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This is a formal 
definition of sort(l) 



How to use it? Step 2 

•  Writing a test-theory: properties of the context 
• Writing a test-specification TS: what do you 
want to test? 
• Example:  

test_spec "sort(l) = prog(l)" 
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I want the program to 
sort list l 



How to use it? Step 3 

•  Writing a test-theory: properties of the context 
•    Writing a test-specification TS: what do you want to test? 

• Conversion into some test-theorem: case-
splitting (big parameterised test case generation 
macro) 
TC1 ⇒ . . . ⇒ TCn ⇒ THYP(H1) ⇒ … ⇒ THYP(Hm) ⇒ TS 
• where test cases TCi have the form 
Constraint1(x) ⇒ . . . ⇒ Constraintk(x) ⇒ P(prog x) 
• where THYP(Hi) are test-hypotheses 
• where TS is the Test Specification 
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How to use it? Step 3 

•  Writing a test-theory: properties of the context 
•    Writing a test-specification TS: what do you want to test? 

• Conversion into some test-theorem: case-
splitting via some test case generation macro 

Example : apply(gen_test_cases 3 1 “prog”) yields 
as constraints, i.e. as test cases  

[] = prog([]) 
[?X1] = prog([?X1]) 
[?X1 ≤?X2 ] ⇒ [?X1, ?X2] = prog([?X1, ?X2]) 
[?X1 > ?X2 ] ⇒ [?X2, ?X1] = prog([?X1, ?X2]) 
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Here are my test cases 



How to use it? Step 3 

•  Writing a test-theory: properties of the context 
•    Writing a test-specification TS: what do you want to test? 

• Conversion into some test-theorem: case-splitting 
via some test case generation macro 

Example : apply(gen_test_cases 3 1 “prog”) yields among 
the hypotheses: 
–  THYP(∃ x y. y < x → [y,x] = sort(PUT [x,y]) → 
∀ x y. y < x → [y,x] = sort(PUT [x,y])) 
–  THYP(3 < |l| → is_sorted(SUT l)) 

Sept. 2017 TASE 2015 43 

Here are some 
hypotheses 



How to use it? Step 4 

•  Writing a test-theory: properties of the context 
• Writing a test-specification TS: what do you want to test? 
• Conversion into test-theorem: case-splitting 

• Generation of test-data: using some SMT 
solver (Z3, Alt-Ergo) 

–  [] = prog [] 
–  [3] = prog [3] 
–  [6,8] = prog [6, 8] 
–  [0,19] = prog [19, 0] 
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Here are some 
tests 



How to exploit the test-
theorems? 

•  In addition to test data generation, hypotheses 
are useful: 

•  As static properties of the program, to be 
proved 

•  As new test specifications, to be tested 
•  As warning to the developers… 
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WHAT? 



IT WAS MY CONCLUSION! 
SOME QUESTIONS? 
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