
Sept. 2017 TASE 2015 1

How can Formal Specifications
benefit to Software Testing?

Marie-Claude Gaudel
Emeritus Professor

LRI, Univ Paris-Sud & CNRS

Sept. 2017 TASE 2015 2

Is that the state of the art?

Sept. 2017 TASE 2015 3

The long quest of a theory of
software testing…

A pioneering paper:
•  « We know less about the theory

of testing, which we do often,
than about the theory of
program proving, which we do
seldom »

Goodenough J. B., Gerhart S.,
 IEEE Transactions on Software
Engineering, 1975

And then many others…

In this talk: formal methods
and software testing

Outline of the talk:
•  Generalities on

specification-based testing
(or model-based testing)

•  Specificities of formal
specifications w.r.t. testing

•  Bridging the gap between
testing and formalities:
–  Testing hypotheses
–  Exploiting testing hypotheses

Sept. 2017 TASE 2015 4

INTRODUCTION PART
Preliminary considerations on specification-based
testing

Sept. 2017 TASE 2015 5

Sept. 2017 TASE 2015 6

A few words on testing…

•  One tests SYSTEMS
•  A system is a dynamic

entity, embedded in the
physical world

•  It is observable via some
limited interface/procedure

•  It is not always controllable
•  It is quite different from a

piece of text (formula,
program) or a diagram

input

output

Sept. 2017 TASE 2015 7

A philosophical interlude

 “A map is not the territory”* Korzybski

A program text, or a specification text,
or a model, is not the system

*A variant: “don’t eat the menu…” J

Sept. 2017 TASE 2015 8

Specification-based Testing

•  The internal organisation of the SUT (System
Under Test) is not considered

•  There is some specified requirement expressed
as a text, formula, diagram,…

•  The aim is to detect deviations of the SUT
w.r.t. the specified requirement

Sept. 2017 TASE 2015 9

Specification-based Testing:
underlying hypotheses

•  The internal organisation of the SUT (System
Under Test) is not considered, indeed…

•  However,
–  Implicitly or explicitly, one considers a class of

“testable implementations” =>
– Notion of Testability Hypotheses on the SUT

Often implicit, but always there!

Sept. 2017 TASE 2015 10

Testability?

•  If the SUT can be any demonic system, there is no
sensible way of testing it L

•  Fortunately, some basic assumptions are feasible
(example: correct implementation of booleans and
bounded integers, determinism, …)

•  Some others can be verified in another way: static
checks on the program, preliminary tests, a priori
knowledge of the environment…

SUT?

Specification-based testing:
for what sort of faults?

•  Are the properties expressed by the
specification satisfied?

•  One tests the SUT against what is expressed by
the specification.

•  Strongly dependent on the kind of
specification/model considered

Sept. 2017 TASE 2015 11

FORMAL SPECIFICATIONS
AND TESTING

Sept. 2017 TASE 2015 12

Formal Specifications?

•  As for any specification framework, there is a
notation:
– Formulas

•  Pre/Post-conditions, 1st order logic, JML, SPEC# …
•  Algebraic Spec (CASL), Z, VDM, B,

– Processes definitions
•  CSP, CCS, Lotos, Circus …

– Annotated diagrams
•  Automata, Finite State Machines (FSM), Petri Nets…

•  But there is more than a syntax…
Sept. 2017 TASE 2015 13

What makes a specification
method formal?

•  There is a formal semantics
– Algebras, Predicate transformers, Sets, Labelled

Transition Systems (LTS), Traces and Failures…
•  There is a formal system (proofs) or a

verification method (model-checking), or both.
•  Thus

– Formal specifications can be analysed to guide the
identification of appropriate test cases.

– They may contribute to the definition of oracles.
Sept. 2017 TASE 2015 14

Relations between formal
specifications

•  In addition to syntax, semantics, deduction
system, formal specifications come with
notions of
– Equivalences (behavioural, observational,…)
– Refinements
– Conformance
–  Satisfaction

•  That are essential for testing
•  That are semantically or/and logically defined
Sept. 2017 TASE 2015 15

Required: a satisfaction/
conformance relation

SUT?

•  Given some “testable” SUT, what does it mean that it
satisfies SP?
•  What is the correctness reference? Is there an
“exhaustive” (or “complete”) set of tests?
•  SP is some sort of model or formula; SUT is some
sort of system; how to define “SUT sat SP” or “SUT
conf SP” in such an heterogeneous context?

SP

Sept. 2017 TASE 2015 16

A generic testability
hypothesis

•  “The SUT corresponds to some unknown
formal specification in the same formalism as
specification SP”
–  If SP is a FSM, SUT behaves like some FSM
–  If SP is a formula, the symbols of the formula can

be interpreted/computed by SUT
–  If SP is a process, SUT can be observed as a

process, with traces and deadlocks
•  Notation: SUT
Sept. 2017 TASE 2015 17

Back to well-established
relations

Sept. 2017 TASE 2015 18

[|SUT|]
SP

SUT
sat/conf/refines

For instance, the satisfaction/conformance relation is
•  equivalence for FSM,
•  logical satisfaction for formulas,
•  Traces refinement, deadlock reduction (conf) for processes,
•  ioco for LTS…

Sept. 2017 TASE 2015 19

SP
SUT

sat/conf/refines

consequences,
counter-examples

Tests and
Test drivers

[|SUT|]

Illustration: testing against
traces refinement in CSP

Sept. 2017 TASE 2015 20

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Illustration: testing against
traces refinement in CSP

Sept. 2017 TASE 2015 21

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Forbidden traces
<sub>
<add,add,add>
<add,sub,sub>
…

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Illustration: testing against
traces refinement in CSP

Sept. 2017 TASE 2015 22

Counter2 = add→C1
C1 = add→C2 []sub→Counter2

C2 = sub→C1

Traces of Counter2
<>
<add>
<add,add>
<add,sub>
<add,add,sub>
…

Forbidden traces
<sub>
<add,add,add>
<add,sub,sub>
…

test1= pass→ sub→ fail→ STOP
test2 = inc→ add→ inc→ add→ pass→ add→ fail→ STOP
test3= inc→ add→ inc→ sub→ pass→ sub→ fail→ STOP

Test submissions
SUT |[add,sub]| test1 \ [add,sub]
SUT |[add,sub]| test2 \ [add,sub]
SUT |[add,sub]| test3 \ [add,sub]

Oracle: the last observed
event is not fail

Exhaustive test set for traces
refinement of CSP

Let us consider the Test Set:
ExhaustT (SP) = {TT (s , a) | s ∈ traces (SP) ∧ ¬ a∈initials (SP /s)}
where
TT (s , a) = inc → a1 → inc → a2 → inc . . . an → pass → a → fail → STOP
for s = <a1,a2 , ...,an>.
For any test T, its execution against SUT is specified as:

ExecutionSP,SUT(T) = (SUT |[αSP]| T)\αSP

Theorem (Cavalcanti Gaudel 2007) :
[|SUT|] is a traces refinement of SP iff
∀ TT (s , a)∈ ExhaustT (SP), ∀ t∈ traces (ExecutionSP,SUT (TT (s , a))),

¬ last (t) = fail

 Sept. 2017 TASE 2015 23

The corresponding testability
hypotheses

•  SUT behaves like a CSP process
– With the same alphabet of actions as SP
– The actions and events are atomic

•  If SUT is non-determinist, it satisfies the
classical complete testing assumption…

•  (after a sufficient number of executions all the possible
behaviours are covered)

– Which can be ensured by some adequate
scheduler/test driver (f.i. CHESS…)

Sept. 2017 TASE 2015 24

Sept. 2017 TASE 2015

Its nice to have some
theorems, but exhaustivity is

not practicable…
exhaust(SP) ?

You are not serious!

Let us select some
adequate finite subset

It has been my
problem for years…

SUT

SUT

25

Sept. 2017 TASE 2015 26

Selection

•  How to select finite subsets of ExhaustSP ?
•  Test Set Selection is based on the specification

(of course, it’s Black Box Testing!)
•  Among the solutions:

– Uniformity hypotheses
– Regularity hypotheses
– Others …

Another example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0> <c.1> …
<c.0,d.0> <c.1,d.1>…
<c.0,d.0,c.7> …
…

Forbidden symbolic traces of Replicator
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

Sept. 2017 TASE 2015 27

An example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0> <c.1>
<c.0,d.0> <c.1,d.1>
<c.0,d.0,c.7>
…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

No condition on v: an arbitrary value
will do => Uniformity Hypothesis

There is one condition on w: v≠w .
Any value satisfying it will do =>
Uniformity Hypothesis, etc

Sept. 2017 TASE 2015 28

An example from CSP

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0> <c.1>…
<c.0,d.0> <c.1,d.1>…
<c.0,d.0,c.7>…
…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

No condition on v: an arbitrary value will do
=> Uniformity Hypothesis => test1
There is one condition on w: v≠w .Any value
satisfying it will do => Uniformity
Hypothesis => test2, etc

Sept. 2017 TASE 2015 29

test1= pass→ d.127→ fail→ STOP
test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP
test5=…

Sept. 2017 TASE 2015 30

But this test set is still infinite!!
And by the way, are you sure that

test5 would be useful?

Just make use of
regularity…but it is
sometimes risky.

What a crazy
academic!

An example of regularity
hypothesis

Replicator = c? x : Int→ d!x→ Replicator
FreshInt(n : Int) = c!n→ FreshInt(n+1)

(FreshInt(0) | [c] | Replicator) \ c parallel composition
with hidden synchronisation on c

Traces of Replicator
<>
<c.0>
<c.1>…
<c.0,d.0>
<c.1,d.1>…
<c.0,d.0,c.7>…

Forbidden symbolic traces
<d.v> ∀ v∈Int
<c.v, d.w> ∀ v,w∈Int, v≠w
<c.v, c.w> ∀ v,w∈Int
<c.v, d.v, d.w> ∀ v,w∈Int
<c.v, d.v, c.w, d.u>∀ v,w,u∈Int, w≠u
…

There is no dependency between the
recursive calls of Replicator.
There is no shared state.
⇒ If the SUT is determinist, one execution
is sufficient => Regularity Hypothesis =>
Finite Test Set
 test1= pass→ d.127→ fail→ STOP

test2 = inc→ c.0→ pass→ d.17→ fail→ STOP
test3= inc→ c.4→ pass→ c.1024→ fail→ STOP
test4 = inc→ c.78→ inc→ d.78→ pass→ d.46→ fail→ STOP

Sept. 2017 TASE 2015 32

Selection Hypotheses

•  Addition to Testability Hypotheses: Selection Hypotheses on the
SUT

•  Uniformity Hypothesis
–  Φ(X) is a property, SUT is a system, D is a sub-domain of the domain of X

–  (∀ t0 ∈ D) (SUT sat Φ(t0) ⇒ (∀ t ∈ D) (SUT |= Φ(t)))
–  Determination of sub-domains ? guided by the specification, see later…

•  Regularity Hypothesis
–  ((∀ t ∈ Dom(X), ⎮t⎮≤ k ⇒ SUT sat Φ(t))) ⇒

 (∀ t ∈ Dom(X) (SUT sat Φ(t))
–  Determination of |t|? cf. specification

Sept. 2017 TASE 2015 33

Selection of finite test sets

•  “Selection Hypotheses” H
on SUT, and construction of
practicable test sets T such
that:

H holds for SUT =>
 (SUT passes T <=> SUT
sat SP) !

•  <H, T> is a valid and

unbiased Test Context
•  or: T is complete w.r.t. H

<SUT testable, exhaust(SP)>

<Weak Hyp, Big Test Set>

<Strong Hyp, Small TS>

<SUT correct, Ø>

INVENTING AND EXPLOITING
TESTING HYPOTHESES

Sept. 2017 TASE 2015 34

“Invention” of selection
hypotheses

Several possibilities:
•  Guided by the conditions that appear in the

specification : case analysis, case splitting
•  Or guided by some knowledge of the

operational environment
•  Or guided by some fault model
•  Or guided by the syntax (coverage criteria)

Sept. 2017 TASE 2015 35

Case splitting

Two main techniques:
•  Reduction of formulas into Disjunctive

Normal Form (DNF) [Dick & Faivre 1993]
•  Unfolding of recursive definitions [Burstall &

Darlington 1977]
Implementations:
•  Conditional rewriting, Narrowing
•  Symbolic evaluation
Sept. 2017 TASE 2015 36

Non-termination of case
splitting?

•  Regularity hypotheses again, or
•  Interpolation – Inference of invariants => use

of proof assistants
•  An advanced prototype: HOL-TestGen:

– Developed by Brucker-Wolff-Brügger-Krieger
– Test case generator for specification based unit

testing
– Built-on top of the HOL/Isabelle theorem proving

environment Sept. 2017 TASE 2015 37

HOL-TestGen in a nutshell

•  In HOL-TestGen you can:
– write test specifications in Higher-order logics (HOL)
–  (semi-) automatically partition the input space,

resulting in abstract test cases
–  automatically select concrete test data
–  automatically generate test scripts (in SML)
–  using a foreign language interface, implementations in

arbitrary languages (e.g. C) can be tested.

Sept. 2017 TASE 2015 38

How to use it? Step 1

•  Writing a test-theory: properties of the context
•  Example: Sorting in HOL

- fun ins :: "(’a::linorder) ⇒’a list ⇒ ’a list"
where "ins x [] = [x] " |
"ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))”
- fun sort:: "(’a::linorder) list ⇒ ’a list"
where "sort [] = [] " | "sort (x#xs) = ins x (sort xs)"

Sept. 2017 TASE 2015 39 TASE 2015

This is a formal
definition of sort(l)

How to use it? Step 2

•  Writing a test-theory: properties of the context
• Writing a test-specification TS: what do you
want to test?
• Example:

test_spec "sort(l) = prog(l)"

Sept. 2017 TASE 2015 40

I want the program to
sort list l

How to use it? Step 3

•  Writing a test-theory: properties of the context
• Writing a test-specification TS: what do you want to test?

• Conversion into some test-theorem: case-
splitting (big parameterised test case generation
macro)
TC1 ⇒ . . . ⇒ TCn ⇒ THYP(H1) ⇒ … ⇒ THYP(Hm) ⇒ TS
• where test cases TCi have the form
Constraint1(x) ⇒ . . . ⇒ Constraintk(x) ⇒ P(prog x)
• where THYP(Hi) are test-hypotheses
• where TS is the Test Specification
Sept. 2017 TASE 2015 41

How to use it? Step 3

•  Writing a test-theory: properties of the context
• Writing a test-specification TS: what do you want to test?

• Conversion into some test-theorem: case-
splitting via some test case generation macro

Example : apply(gen_test_cases 3 1 “prog”) yields
as constraints, i.e. as test cases

[] = prog([])
[?X1] = prog([?X1])
[?X1 ≤?X2] ⇒ [?X1, ?X2] = prog([?X1, ?X2])
[?X1 > ?X2] ⇒ [?X2, ?X1] = prog([?X1, ?X2])

Sept. 2017 TASE 2015 42

Here are my test cases

How to use it? Step 3

•  Writing a test-theory: properties of the context
• Writing a test-specification TS: what do you want to test?

• Conversion into some test-theorem: case-splitting
via some test case generation macro

Example : apply(gen_test_cases 3 1 “prog”) yields among
the hypotheses:
–  THYP(∃ x y. y < x → [y,x] = sort(PUT [x,y]) →
∀ x y. y < x → [y,x] = sort(PUT [x,y]))
–  THYP(3 < |l| → is_sorted(SUT l))

Sept. 2017 TASE 2015 43

Here are some
hypotheses

How to use it? Step 4

•  Writing a test-theory: properties of the context
• Writing a test-specification TS: what do you want to test?
• Conversion into test-theorem: case-splitting

• Generation of test-data: using some SMT
solver (Z3, Alt-Ergo)

–  [] = prog []
–  [3] = prog [3]
–  [6,8] = prog [6, 8]
–  [0,19] = prog [19, 0]

Sept. 2017 TASE 2015 44

Here are some
tests

How to exploit the test-
theorems?

•  In addition to test data generation, hypotheses
are useful:

•  As static properties of the program, to be
proved

•  As new test specifications, to be tested
•  As warning to the developers…

Sept. 2017 TASE 2015 45

WHAT?

IT WAS MY CONCLUSION!
SOME QUESTIONS?

Sept. 2017 TASE 2015 46

