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SCADE

I Safety Critical Application Development Environment

I Scade 6 is the underlying language of SCADE Suite

I belongs to the family of synchronous languages

I is a dialect of Lustre (data-flow oriented)

I includes major extensions in its version 6 (Scade 6)

I is a DSL dedicated to the development of critical systems

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice.
Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. 1987.
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Scade and safety critical applications

I most of safety critical applications are digital controllers;

I block diagrams and state machines are widely used in control engineering;

I good matching between language and diagrams (semantics and intuition);

I good properties of the language: runs in finite memory, deterministic;

I Scade compiler (code generator) is qualified for several standards: DO-178C
(DO-330 TQL 1), EN-50128, IEC-61508.
i.e. it can be used without having to verify its output.
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Formal Methods in avionics standard

From Formal Methods Supplement to DO-178C and DO-278A (DO-333, Dec. 2011):

”Establishing a formal model of the software artifact of interest is fundamental to all
formal methods. In general a model is an abstract representation of a given set of
aspects of the software that is used for analysis, simulation, and/or code generation. In
the context of this document, to be formal, a model should have an unambiguous,
mathematically defined syntax and semantics. This makes it possible to use automated
means to obtain guarantees that the model has certain specified properties.”
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Reactive System

A system that interacts continuously with its environment (physics, user, . . . )

Reactive
System

Environment
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Mathematical viewpoint

A reactive system is a function of sequences to sequences.

S0

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .

Scade is a language to define mutually recursive sequences.
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Operational viewpoint

S0

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .
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Operational viewpoint

S1

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .
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Operational viewpoint

Sn

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .
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Operational viewpoint

Sn

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .

A step:

I read inputs

I compute outputs

I update internal state

let f be the function that computes one reaction: on,Sn+1 = f (in,Sn)
the code generator produces the function f and the initial state S0.
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The data-flow kernel

Point-wise extension of combinatorial operators:

x x0 x1 . . . xn . . .

y y0 y1 . . . yn . . .

x + y x0 + y0 x1 + y1 . . . xn + yn . . .

x+y represents the sequence (xn + yn)n∈N

likewise for: not, and, or, -, *, . . .
Constants and literals are lifted to sequences:

2 2 2 . . . 2 . . .

x x0 x1 . . . xn . . .

2 * x 2 ∗ x0 2 ∗ x1 . . . 2 ∗ xn . . .
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The data-flow kernel

Unit delay:
x x0 x1 . . . xn . . .

pre x nil x0 . . . xn−1 . . .

let x represent the sequence (xn)n∈N, pre x represents the sequence (pn)n∈N defined
by:

p0 = nil and ∀n ∈ N, pn+1 = xn

where nil is an undefined value of the right type.
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The data-flow kernel

Initialization:
x x0 x1 . . . xn . . .

y y0 y1 . . . yn . . .

x -> y x0 y1 . . . yn . . .

combined with pre to build a delayed stream without nil :

x x0 x1 . . . xn . . .

pre y nil y0 . . . yn−1 . . .

x -> pre y x0 y0 . . . yn−1 . . .
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The data-flow kernel

filtering with a clock:

h true false true true false . . .

x x0 x1 x2 x3 x4 . . .

x when h x0 x2 x3 . . .

Extension on the clock of the clock:

h true false false true false . . .

a a0 a1 . . .

current a a0 a0 a0 a1 a1 . . .
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Determinism of Lustre

determinist. . . if used with care!

Synchronous principles give deterministic parallel composition.
BUT this is not the only source of non determinism:

the initial state must be well managed
and Lustre does not guarantee that! (nil in memories)

note: this is not an issue to verify properties because either they are independent of
the initial state or they are falsifiable.
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Scade 5 example
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Genesis of Scade 6

Needs:

I Control (activation) structures: conditionals, automaton

I Arrays and primitives to use them

I Ensure determism (handling of the nil issue)

18 Scade 6 c© ANSYS, Inc.



Solving non determinism

The case of current is hard to solve in general:

h false false false true false . . .

a a0 . . .

current a nil nil nil a0 a0 . . .

motto: do not depend on a model-checker to state the correctness, use classical tools
of programming language design:

I constructions (syntax, semantic);

I typing disciplines.

proposition:

I replace current and

I define a dedicated type system that ensures determinism.
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An alternative to ”current”

To avoid initialization issue, a common Lustre pattern is to use it combined with a
test of the clock:

i f h then c u r r e n t x e l s e e

where h is the clock of x.

proposition: introduce a primitive that merges streams on complementary clocks.

Paul Caspi and Marc Pouzet
Synchronous Kahn Networks.
In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pennsylvania, May 1996.

Grégoire Hamon
Calcul d’horloge et Structures de Contrôle dans Lucid Synchrone, un langage de flots synchrones à la ML
Thèse Université Pierre et Marie Curie, 14 Nov. 2002

Marc Pouzet
Lucid Synchrone version 3.0, Tutorial and Reference Manual.
2006
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merge

h true false true true false . . .

a a0 a1 a2 . . .

b b0 b1 . . .

merge (h; a; b) a0 b0 a1 a2 b1 . . .

in Lustre: if h then current a else current b.

But merge does not introduce memories.
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Initialization analysis

principle: add a very simple type system with two types:

I 1 for a stream that may start by nil ;

I 0 for a stream that is always defined.

subsumption: an argument of type 0 can always be used in a position where 1 is
required.

Property: the outputs of the root node never contain a nil .

Jean-Louis Colaço and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004.
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Initialization analysis: pre and ->

pre : 0→ 1
pre (pre x) : cannot be typed

pre (pre x) nil nil x0 . . . xn−2 . . .

v -> pre (pre x) v0 nil x0 . . . xn−2 . . .

the nil in second position cannot be eliminated.

-> : ∀δ, δ × 1→ δ

23 Scade 6 c© ANSYS, Inc.



Example: Rising edge detection

node rising_edge(a : bool ) r e t u r n s (o : bool )
o = a and not pre a;

type: 0→ 1

node root(a, b : bool ) r e t u r n s (o : bool )
o = rising_edge(a) or rising_edge(b);

type : 0× 0→ 1

24 Scade 6 c© ANSYS, Inc.
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Example: Rising edge detection
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Need of control structure

In Lustre, only clocks allow to control computation; but they are hard to use. Users
prefer to use conditional activation:

I Scade 5: condact (c; N; e; i)

I Scade 6: (activate N every c initial default i) (e)

drawback: needs to introduce an operator N and does not allow to easily share a
stream between different activations.

25 Scade 6 c© ANSYS, Inc.



Scopes, control and explicit memories

I Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

I last ’x: access to the last value of x in its declaration scope (new construct).

I Allows for different styles:

node counter () r e t u r n s (o : i n t 3 2 )

o = 1 -> pre (o + 1);

can also be written:

node counter () r e t u r n s (o : i n t 3 2 l a s t = 0)

o = l a s t ’o + 1;

o is manipulated as an explicit named memory.

... a flavour of imperative style.

26 Scade 6 c© ANSYS, Inc.



Scopes, control and explicit memories

I Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

I last ’x: access to the last value of x in its declaration scope (new construct).

I Allows for different styles:

node counter () r e t u r n s (o : i n t 3 2 )

o = 1 -> pre (o + 1);

can also be written:

node counter () r e t u r n s (o : i n t 3 2 l a s t = 0)

o = l a s t ’o + 1;

o is manipulated as an explicit named memory.

... a flavour of imperative style.

26 Scade 6 c© ANSYS, Inc.



Scopes, control and explicit memories

I Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

I last ’x: access to the last value of x in its declaration scope (new construct).

I Allows for different styles:

node counter () r e t u r n s (o : i n t 3 2 )

o = 1 -> pre (o + 1);

can also be written:

node counter () r e t u r n s (o : i n t 3 2 l a s t = 0)

o = l a s t ’o + 1;

o is manipulated as an explicit named memory.

... a flavour of imperative style.
26 Scade 6 c© ANSYS, Inc.



Example: second degree equation

f u n c t i o n s e c o n d d e g r e e ( a , b , c : f l o a t 6 4 ) r e t u r n s ( x r , x i , y r , y i : f l o a t 6 4 )
v a r d e l t a : f l o a t 6 4 ;
l e t

d e l t a = b∗b − 4 ∗ a∗c ;

a c t i v a t e
i f d e l t a > 0
then

v a r d : f l o a t 6 4 ;
l e t

d = s q r t ( d e l t a ) ;
xr , x i = ((−b + d ) / (2 ∗ a ) , 0) ;
yr , y i = ((−b − d ) / (2 ∗ a ) , 0) ;

t e l
e l s e i f d e l t a = 0
then

l e t
xr , x i = (−b / (2 ∗ a ) , 0 ) ;
yr , y i = ( xr , x i ) ;

t e l
e l s e −− d e l t a < 0

l e t
xr , x i = (−b / (2 ∗ a ) , s q r t (−d e l t a ) / (2 ∗ a ) ) ;
yr , y i = ( xr , − x i ) ;

t e l
r e t u r n s xr , yr , x i , y i ;

t e l
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Example:

node s i l l y w a l k ( c : boo l ) r e t u r n s ( o : i n t 3 2 l a s t = 0)
l e t

a c t i v a t e
i f c then

v a r i n c : i n t 3 2 ;
l e t

o = l a s t ’ o + i n c ;
i n c = (−17) −> pre (36 −> pre i n c ) ;

t e l
e l s e

v a r i n c : i n t 3 2 ;
l e t

o = l a s t ’ o + i n c ;
i n c = (−3) −> pre ((−33) −> pre (25 −> pre i n c ) ) ;

t e l

r e t u r n s o ;
t e l

c true true true false false false false true true false false false true false false false false false false true true false true true true true· · ·

then/inc -17 36 -17 36 -17 36 -17 36 -17 36 -17 36 · · ·

else /inc -3 -33 25 -3 -33 25 -3 -33 25 -3 -33 25 -3 -33 · · ·

o -17 19 2 -1 -34 -9 -12 24 7 -26 -1 -4 32 -1 24 21 -12 13 10 -7 29 -4 -21 15 -2 34 · · ·

28 Scade 6 c© ANSYS, Inc.



Scade 6 other constructs

I arrays and iterators
Lionel Morel and Florence Maraninchi
Arrays and contracts for the specification and analysis of regular systems
In Proceedings. Fourth International Conference on Application of Concurrency to System Design, 2004. ACSD 2004.

I modular reset of node instances
Grégoire Hamon and Marc Pouzet
Modular Resetting of Synchronous Data-flow Programs
In ACM International conference on Principles of Declarative Programming (PPDP’00)

I hierarchical state machines
Jean-Louis Colaço and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT’05)
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SCADE 6 example: digital watch
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Scade 6 and Lustre kernels

op
pre
->

when

merge

reset

current

Scade 6

LUSTRE
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Type checking

Operators arguments are of the right type.
Array accesses are within array bounds.

32 Type systems c© ANSYS, Inc.



Clock checking

The program can execute synchronously.
Corollary: no need to bufferize streams, can run with a finite amount of memory.

Jean-Louis Colaço and Marc Pouzet.
Clocks as first class abstract types.
In Third International Conference on Embedded Software (EMSOFT’03)
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Causality analysis

No ”instantaneous” cycle (xn = f (xn))
Corollary: equations can be statically scheduled.

Inspired by:

Pascal Cuoq and Marc Pouzet
Modular Causality in a Synchronous Stream Language.
In European Symposium on Programming (ESOP’01)
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Initialization analysis

Outputs are always defined (no nil).
Corollary: determinism.

Jean-Louis Colaço and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004.

35 Type systems c© ANSYS, Inc.
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Scade 6 Compiler organization

Scade 6
correct

Scade 6

Static
analyses

1

Automata
translation 2

Core
Dataflow

Sequential
Code

Dataflow
compilation

3

1. see previous 4 slides

2. Jean-Louis Colaço and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT’05)

3. D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet,
Clock-directed Modular Code Generation of Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008
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Implementation of the qualified compiler (KCG)

I OCaml (≈ 50Klocs);

I with specific developments: code coverage tool for OCaml, simplified runtime
with a Stop&Copy GC;

I formalized static semantics used as a precise specification (≈ 100p);

I based on a standards process: plans, specification, design (≈ 1000p) , dev., unit
tests (≈ 500Klocs), tests and reviews.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colaço, T. Moniot and P. Wang.
Certified development tools implementation in Objective Caml.
In International Symposium on Practical Aspects of Declarative Languages PADL 08. LNCS. Springer-Verlag, January 2008.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colaço, T. Moniot, P. Wang and P. Manoury.
Experience Report: Using Objective Caml to Develop Safety-Critical Embedded Tools in a Certification Framework
In International Conference on Functional Programming Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009
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Formal Verification of Scade models

A Scade model involves a bounded amount of memory
⇒ it represents a finite state system
⇒ model checking techniques apply

Safety: something bad (undesirable) cannot happen
e.g. ”Train doors cannot open while the train is rolling.”

Liveness: something good (hoped-for) will eventually happen
e.g. ”The train will eventually leave the station.”

I A satefy property expresses in Scade as a Boolean stream;

I proving it consists in verifying that this stream is constant and equal to true.

N. Halbwachs, F. Lagnier and C. Ratel.
Programming and verifying critical systems by means of the synchronous data-flow programming language Lustre.
In IEEE Transactions on Software Engineering, Special Issue on the Specification and Analysis of Real-Time Systems. September 1992.
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SCADE design verifier

I Based on Prover Technology proof engine

I SAT based model-checker: BMC, k−induction.
I Supports:

I bounded integers (bitblasting).
I unbounded integers.
I rationals, used to support floats but not a safe abstraction.

I The translation from Scade 6 to the engine (TECLA/HLL) is based on KCG.

M. Sheeran, S. Singh and G. Stalmark.
Checking safety properties using induction and a SAT-solver.
FMCAD 2000
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Formal Verification in Embedded Software Industry

I Is a must have for SCADE evaluations.
I Main limitations to deployment:

I Skills and patience (fantasy of push button solution).
I Limited capabilities of the tool on numerical aspects (floats and non-linearities).
I Lack of clear positioning in existing processes and standards.

I Successes in railway transportation:
I RATP: http://projects.laas.fr/IFSE/FMF/J4/slides/P07 Evguenia Dmitrieva.pdf
I RATP recommends the usage of formal verification to their suppliers; once skilled

some use it for other project.
I Order of magnitude of SAT instances: 106 variables and 107 clauses.
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Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.
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Presentation of the magic trick in G.Huet paper:
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I take a card deck where card color alternate;

I split it in two;

I ensure the bottom cards of the two sub-decks have
different colors;

I riffle shuffle them.

Property:
the resulting deck is a list of pairs red-black or black-red.



Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

41 Formal Verification of Scade 6 models c© ANSYS, Inc.

The property is implied by the following one on Boolean
streams:

if s1 and s2 be two alternate streams starting with different
values; let o be a stream built by “riffle shuffling” s1 and s2;
then o is such that it is a succession of pairs of different
values.



Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

41 Formal Verification of Scade 6 models c© ANSYS, Inc.

node G i l b r e a t h s t r e a m ( c l o c k c : boo l ) r e t u r n s ( o , p r o p e r t y : boo l )
v a r

s1 : boo l when c ;
s2 : boo l when not c ;
h a l f : boo l ;

l e t
s1 = ( f a l s e when c ) −> not ( pre s1 ) ;
s2 = ( t r u e when not c ) −> not ( pre s2 ) ;
o = merge ( c ; s1 ; s2 ) ;

h a l f = f a l s e −> ( not pre h a l f ) ;

p r o p e r t y = t r u e −> not ( h a l f and ( o = pre o ) ) ;
t e l
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Timeline of Scade and influences
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Conclusion

I Use of state of the art programming language principles for an industrial qualified
tool (> 100 avionic systems certified);

I Implementation in OCaml;
I Further step: certification in Coq and DO-330 qualification.

T. Bourke, P.-E. Dagand, M. Pouzet, and L. Rieg. T. Bourke, L. Brun, P-E. Dagand, X. Leroy, M. Pouzet and L. Rieg
A Formally Verified Compiler for Lustre .
In International Conference on Programming Language, Design and Implementation (PLDI)

X. Leroy,
How much is a mechanized proof worth, certification-wise?
In Principles in Practice, January 2014

Long, fruitful and continuing collaboration with Marc Pouzet.
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Scade Academic Program

http://www.esterel-technologies.com/scade-academic-program/
Contact: scade-academics@ansys.com
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